
Lawrence Qiu Photonic Matrix Multipliers EE115 Spring 2024

Photonic Matrix Multipliers Light Up Artificial Brains

1 Introduction

Artificial intelligence has taken the world by storm.
Despite being in infancy, machine learning techniques
have already proven itself in industries everywhere
from agriculture to healthcare. However, as we de-
mand more from the technology, we also sacrifice
more to it. AI is notoriously computationally ex-
pensive: generating a single image using the latest
models consumes as much energy as it takes to fully
charge a phone [1]. As industry leaders like OpenAI
are pouring billions into installing and operating new
hardware, environmentally conscious and cost sensi-
tive researchers and developers are searching for alter-
native methods to run machine learning algorithms.

All current commercial processors are based on the
CMOS process. Conceived in the 60’s, the technology
uses complementary sets of transistors to form logic
gates, circuits, and eventually, processors [2]. How-
ever, after sixty years of development, the technology
is approaching its limits. Continued miniaturization
efforts require increasingly complex transistor geome-
tries with plateauing benefits, causing researchers to
look away from CMOS for the next generation’s com-
puting platform. These post-CMOS technologies in-
clude quantum information processing systems, pro-
cessors based on exotic materials like topological in-
sulators, and optical processors.

Optical processors are particularly suited as a ma-
chine learning accelerator [3]. Operating at the speed
of light, the technology can meet the high through-
put and low latency demands of artificial intelligence
at a fraction of the power consumption of CMOS
processors. Additionally, unlike most post-CMOS
technologies, photonic processors have the potential
to leverage existing CMOS manufacturing infrastruc-
ture, reducing costs and accelerating development.
The matrix multiplication step in machine learning
algorithms is particularly suited as a target for accel-
eration, being relatively stable, computationally ex-
pensive, and universally present in all AI systems.

We explore three implementations of photonic ma-
trix multiplication proposed by Tang et al. [4],
Ribeiro et al. [5], and Tait et al. [6]. Each of
these implementations utilize different properties of
matrix multiplication and nanophotonic systems to
achieve a unique set of device characteristics. We
compare them under three lenses—mathematical un-

derpinnings, device choice, and fabrication—to deter-
mine the suitability of each towards accelerating AI
workloads.

2 Background

Matrix multiplication is essential to artificial intelli-
gence because artificial intelligence mimics human in-
telligence [7]. Specifically, artificial intelligence mim-
ics the layout of the cells in our brains—neurons. The
structure of a neuron can be broken into three parts:
dendrites, the cell body, and the axon. Dendrites
are extensions of the cell body that branch off to
receive signals from other cells. These signals col-
lect centrally in the cell body until a critical mass is
met, triggering an action potential. During an action
potential, a signal travels down the axon—another
extension of the cell body—until meeting the den-
drites of other neurons. At these junctions, called
synapses, signals are transmitted between neurons,
allowing them to communicate with each other. Fi-
nally, the neuron is reset, allowing it to collect signals
again.

Although simple individually, the billions of neu-
rons in our brains allow us to do complex cognitive
tasks, including reasoning, remembering, and motor
control. Specifically, the number of synapses and the
strength of each synapse between each pair of neurons
are thought encode these abilities. Artificial neural
networks (ANN) aim to capture the intelligence of
biological neural networks (BNN) while eliminating
unnecessary complexity. Artificial neurons are mod-
eled in layers, where each neuron receives the outputs
of the previous layer. Specifically, the value of each
neuron is a weighted sum of neurons in the previous
layer, reflecting synaptic strengths and integration at
the cell body, passed through an activation function,
which models the ‘all-or-nothing’ effect of the action
potential:

yi = f

󰀳

󰁃
󰁛

j

wijxj

󰀴

󰁄

The weighted sum can be rewritten as a matrix
multiplication step, where each element denotes the
weight between each neuron in the previous layer and
each neuron in the current layer. Since all neural net-
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works are based on these operations, matrix multipli-
cation is essential to artificial intelligence.

3 Comparing Device Design
(Mathematical Foundation)

Despite its simplicity, matrix multiplication can be
viewed from many perspectives and implemented
many ways. Each of the three photonic matrix multi-
plication implementations utilize a different property
of matrices to achieve the same desired result.

All implementations place constraints on the ma-
trix. For example, total power out cannot be greater
than total power in, so coefficients must be less than
one. The first implementation, by Tang et al., also
demands that the matrix must be unitary. This prop-
erty, denoted by UU † = I, can be thought of as
the complex extension of orthogonality and results in
many properties useful in a photonic matrix multipli-
cation implementation [8]. Notably, a unitary matrix
T can be decomposed into the product of a series of
phase shifting and diffractive matricies Φi and D:

T = ΦM ·D · ΦM−1 · · ·D · Φ1

Φ =
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The diffractive matrix D can be an arbitrary uni-
tary matrix while each phase shifter Φi must be tuned
to correctly implement a particular matrix. However,
as long as there are as many phase shifting stages as
there are columns or rows in T , a specific combination
of Φi’s always exist for any T . Although the proof of
this is outside the scope of this paper, the method
can be thought of an extension of the Mach-Zehnder
interferometer (MZI) for more than two channels.

The implementation proposed by Ribeiro et al. also
demands that the matrix is unitary but utilizes a dif-
ferent property of unitary matrices. It relies on a
pivotal result by Reck et al., which showed that prod-
uct by a N-by-N unitary matrix can be decomposed
into several 2x2 multiplications and a product by a
(N-1)-by-(N-1) unitary matrix [9]:

U(N)·TN,N−1·TN,N−2·. . .·TN,1 =
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The input unitary matrix, U(N), is multiplied
by several transformational matricies Ti,j , which are
identity matrices with a square of elements replaced
by a 2-by-2 unitary matrix. Configured with the cor-
rect Ti,j , the resulting unitary matrix has one less di-
mension, aside from a phase difference. The process
can be repeated until we are left with only 2-by-2
matrices, which are much simpler operations easily
accomplished in optics using MZIs.

Lastly, the implementation proposed by Tait et al.
relies on matrix multiplication in its simplest form:
repeated multiplication and addition. Each element
in the input vector is multiplied with an element in
the matrix and summed together. While this requires
an optical element for every element of the matrix,
among other disadvantages, its simplicity and lack of
preprocessing allows it to be applied in ways that the
earlier methods can’t.

4 Comparing Device Design
(Component Choice)

Each method of matrix multiplication described
above can be efficiently implemented using a small
set of nanophotonic components. In principle, these
designs should be relatively simple, but practical con-
siderations require additional components, such as for
off-chip coupling, readout, tuning, or error correction.

In Tang et al.’s implementation, the device struc-
ture is straightforward: phase shifting matrices are
implemented using phase shifters and diffractive ma-
trices are implemented using directional couplers.
The final schematic, shown in Figure 1a, is a se-
ries of phase shifters and directional couplers cas-
caded, matching one-to-one to the mathematical de-
scription. Most of the on-chip complexity lies in the
phase shifters: since the authors implemented a 10-
by-10 matrix, the design required the control of over
a hundred phase shifters. The authors also tested
transverse-electric and transverse-magnetic polariza-
tion of input light, necessitating an additional com-
ponent.

Ribeiro et al.’s implementation is similarly
straightforward: each 2-by-2 matrix multiplication
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Figure 1. (a) Schematic of device proposed by Tang et al., showing alternating series of phase shifters
and directional couplers. (b) Schematic of device proposed by Ribeiro et al., showing cascaded set of Mach-
Zehnder interferometers to stepwise decompose the matrix. (c) Schematic of device proposed by Tait et al.,
showing input/output and drop buses with ring resonators.

is implemented using a Mach-Zehnder interferome-
ter and phase shifters map to phase shifters. The
MZI is implemented using two multi-mode interfer-
ometers and a phase shifter on each arm. In the
resulting schematic, shown in Figure 1b, the step-
wise process of the algorithm is evident: each stage
reduces the dimensionality of the operation by one
until the final stage is a 1-by-1 matrix product, i.e. a
feedthrough. In the actual implementation, the au-
thors additionally tapped the output of each MZI to
a grating coupler using a 1% efficient directional cou-
pler to monitor and tune the phase shifters.

Unlike the previous two implementations, Tait et
al.’s implementation encodes each value in the in-
put vector as a wavelength rather than as a position
among several waveguides. This technique, known
as wavelength division multiplexing (WDM), allows
the device to use a single waveguide to transmit the
entire input vector. To address the elements individ-
ually, ring resonators are used to selectively filter in
or out light of a particular wavelength. In this im-
plementation, shown in Figure 1c, the bus with the
initial WDM-encoded input vector is also interpreted
as the output vector, with four ring resonators tuned
to different wavelengths to selectively eject light of
a particular wavelength into a secondary ‘drop’ bus.
The ring resonators are fitted with phase shifters to
tune the exact resonant wavelength: if a resonator is
set exactly to the wavelength of its target input vector
element, the entirety of the light will be dropped, con-
stituting a product by zero. Meanwhile, if the phase
shifters shift the resonant wavelength away from that
of the input vector element, most of the optical power
will stay in the input/output bus, constituting a prod-

uct by one. Any coefficient between zero and one can
be created by tuning the phase shifter between these
extremes. Note, however, that there isn’t an explicit
‘sum’ operator to add up the filtered wavelengths: the
total output optical power is already the sum of the
optical powers of each constituent wavelength. Ad-
ditionally, this paper only implements product by a
1-by-N matrix, i.e. a weighted sum. However, the
concept can be easily extended to a M-by-N matrix
multiplier by simply splitting the initial bus into sev-
eral by using, for example, a directional coupler.

5 Comparing Fabrication

The three implementations choose nearly identical
platforms to fabricate their designs. Each use the
silicon on insulator (SOI) material platform, i.e. sil-
icon cores with silicon dioxide cladding. They also
choose to target the same 1550nm telecom wave-
length, though Tait et al. varied the wavelength be-
tween 1546nm and 1552nm to encode the different
channels of the input vector. They also use thermo-
optic phase shifters, though of different materials:
Ribeiro et al. use titanium heaters, Tait et al. use
Ti/Pt/Au heaters, and Tang et al. doesn’t specify.
The dimensions of the waveguides are also similar:
all three have 220nm thick waveguides, with Tang
et al. choosing a 400nm wide waveguide, Tait et al.
choosing a 500nm wide waveguide, and Ribeiro et al.
not specifying.

Fabrication of the devices is equally uninteresting:
Tang et al. and Ribeiro et al. merely mentioned us-
ing external fabrication services to make their devices
while Tait et al. additionally specified the electron
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beam lithography based procedure they followed to
manufacture their device.

However, these similarities do allow an apples-to-
apples comparison of device characteristics, such as
footprint, power consumption, and accuracy, based
solely on device principles. Unfortunately, the three
papers aren’t consistent in specifying these details.
For footprint, dimensions are estimated based on fig-
ures and photos with scales. Tang et al.’s device is
about 0.5mm2 for a single stage, and with 14 stages,
the footprint is 7mm2 total. Meanwhile, Ribeiro
et al.’s entire device is 2mm2 and Tait et al.’s de-
vice is only 0.02mm2. Since these papers imple-
ment multiplication of different matrix sizes, these
metrics must be normalized to be comparable. For
a single matrix element, Tang et al.’s design uses
7mm2 · (10 · 10)−1 = 0.070mm2, Ribeiro et al.’s de-
sign uses 2mm2 · (4 · 4)−1 = 0.125mm2, and Tait et
al. uses 0.02mm2 · (1 · 4)−1 = 0.005mm2. Note, how-
ever, that these figures don’t consider necessary off
chip support.

6 Discussion

Our original objective was to access each of these
designs as a potential machine learning accelerator.
Now, after thoroughly considering each of them, we
may ask: which one’s the best?

Today’s largest models have trillions of parameters,
necessitating the multiplication of matrices with mil-
lions of elements. Therefore, minimizing the footprint
of each element is key. The calculations above show
that Tait et al.’s proposal uses the least area per el-
ement among the three designs. However, the design
requires the input vector to be already encoded using
WDM—this may be difficult for larger vectors given
necessary wavelength spacing. Additionally, unlike
Tang et al. and Ribeiro et al.’s designs, two matrix
multiplication operations cannot be cascaded since
the output vector is not WDM encoded.

Tang et al. and Ribeiro et al.’s designs are more di-
rectly comparable since both require unitary matrices
and encode input vector across multiple waveguides
rather than with WDM. The metrics above put Tang
et al.’s design in the lead, using about half as much
area per element as Ribeiro et al.’s design. However,
since neither author attempted to optimize their de-
sign for area, it is entirely possible for one design to
overtake the other in a later iteration.

A more interesting comparison is between these
two designs and Tait et al.’s towards applicability

in different stages of a model’s lifetime. Generally,
there are two: training and inference. During train-
ing, the model’s weights are modified according to
some algorithm, such as back propagation, to better
model a dataset. Then, during inference, the model
is deployed to make decisions on previously unseen
data. This is relevant because Tait et al.’s design ex-
poses matrix element values directly as changes in the
resonance of a corresponding ring resonator whereas
Tang et al. and Ribeiro et al.’s require numerical
preprocessing of the matrix to determine the neces-
sary phase shifts to correctly implement the matrix.
By exposing matrix values directly, the learning al-
gorithm can also be implemented on the same chip
as the matrix multiplier. This was demonstrated us-
ing a similar ring resonator/WDM configuration by
Feldmann et al. using Hebbian learning [10]. Mean-
while, Tang et al. and Ribeiro et al.’s designs are
more suited for the inference stage given the prepro-
cessing required.

7 Future Outlook and Conclusion

We reviewed three implementations of photonic ma-
trix multiplication, comparing them based on their
mathematical underpinnings, component choice, and
fabrication, with a focus on applicability to machine
learning. Overall, each design shows potential as
the basis of a future AI accelerator, whether that
be in training or inference. However, none of the
designs are quite there yet: these implementations
don’t demonstrate inference of an actual AI model,
so potential issues in terms of accuracy, reliability,
or robustness may need to be worked out before a
practical matrix multiplier can be deployed.

Once these details are solved, however, photonic
matrix multipliers may become an unrivaled tool in
artificial intelligence, if not a necessity. Harnessing
the speed of light, they promise unmatched speed,
throughput, and power efficiency—features increas-
ingly valuable as leading AI models become larger
and more power hungry. Overall, photonics highlight
a potential path towards better, brighter AI systems.
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