CS 138: Homework 3

Lawrence Qiu

November 5, 2025

1 Introduction

Exercise 7.10 of Sutton and Barto asks us to devise an off-policy prediction
problem and compare the per-decision G calculation method with the standard
direct p weighting method, showing that the per-decision method is more data-
efficient than the direct weighting method.

In off-policy control problems, an exploratory policy b is used to interact with
the environment and generate samples, but the calculated value or @ function
corresponds to a different policy = (often the greedy policy). One method
to adapt an on-policy method for an off-policy problem is to use importance
sampling. In importance sampling, updates to the value function are weighted
by the relative likelihood of generating the trajectory under the target policy
versus under the exploratory policy. This can be extended to n-step TD by
multiplying the relative probabilities for each step:

min(h,T—1
P CAE D)
t: P b(Ak | Sk)v

with the value update function
Vian(St) = Vign—1(St) + aprittn—1 [Grtn — Vign—1(St)] .

The disadvantage of this method is that if on any step of the n-step TD
trajectory the probability of the target policy is zero, then the entire relative
likelihood becomes zero, causing the update to be zero. This issue is reasonable:
given an e-greedy exploratory policy, there is an € likelihood of choosing the non-
optimal action (assuming a large action count), and the cumulative likelihood
of choosing any non-optimal action increases exponentially with n.

An alternative is the per-decision method. Rather than correcting for bias
with the whole trajectory, the bias is corrected for on each step of the n-step
trajectory by bootstrapping unlikely target policy actions with the existing value
function (known as the control variate):

Gin = pt (Rig1 +YGiy1:n) + (1 — pe) Vi—1(Se).

Then, the final value update function can be identical to the non-importance
sampling update function:

Vitn(St) = Vign—1(St) + @ [Graen — Vign—1(5t)] .

2 Part 1: Implementing the Exercise

For the environment, I recreated the cliff navigation problem where the agent
is given —1 reward on each step and a —10 reward if it falls off the cliff. The
agent can either go right next to the cliff (reducing path length) or go around
and reduce the likelihood of falling down if the policy isn’t optimal. This was to
verify if my implementation of importance sampling is correct, as the expected
final @-function should match that of the optimal @-function (where the greedy
path is right next to the cliff) even when the behavioral policy is e-greedy.

The control method I used is n-step Sarsa with importance sampling, using
an e-greedy behavioral policy and a greedy target policy. For the following
experiments, I used the parameters ¢ = 0.1, v = 0.9, a = 0.01, and n = 3, and
simulated for 5000 episodes.

. Greedy Episode Trajectory
Learned Q-values after 5000 episodes

P S SOU Qi SR SO S S0 St 58

(b) Greedy trajectory using learned Q-
values, with path next to cliff indicating
correct implementation.

(a) @ values after learning with off-policy
n-step Sarsa.

Figure 1: Results of off-policy n-step Sarsa on the cliff environment.

To evaluate the significance of the “zeroed out” importance sampling ratio
issue, I computed the percentage of updates that were discarded per episode,
shown in Figure 2. The discarded ratio stands at about 20%, which is close to
the calculated amount: 1 — ((1 — 2¢))" ~ 20.8%.

Discarded Percent over Time

Discarded Percent

08l Smoothed Discarded Percent

o
o

0.4

| N psatra AW

0.0

Discarded Percent

o 1000 2000 3000 4000 5000
Episode

Figure 2: Percent of zero-ed out TD updates by episode.

Next, I implemented a modified version of off-policy Sarsa with per-decision
G calculation. This is identical to the value function-based G calculation method
mentioned previously except that the importance sampling calculation is not
done for the first action in the n-step TD update trajectory. With the same
parameters as before, the resulting learned @-values are identical, indicating
correct implementation.

Then, I compared the sample efficiency between the two methods by aver-
aging the by-episode episode length over 10 runs of each method.

Episode Lengths over Time (Standard), Averaged over 10 runs Episode Lengths over Time (Per-Decision), Averaged over 10 runs

Average Episode Lengths

Average Episode Lengths (Per-Decision)
100 —— Smoothed Average Episode Lengths

—— Smoothed Average Episode Lengths (Per-Decision)

o
3

2
&

Episode Length
8

&
Episode Length

~
S

m | S—

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Episode Episode

=
S

(a) By-episode episode lengths averaged (b) By-episode episode lengths averaged
over 10 runs using standard off-policy over 10 runs using per-decision off-policy
Sarsa. Sarsa.

Figure 3: Comparison of learning efficiency between standard and per-decision
off-policy Sarsa.

Interestingly, the shape of the standard method shows a “hump” at the be-
ginning of the run that doesn’t appear in the per-decision method. Averaging
the episode length across episodes, the final average episode length for the stan-
dard method is 23.43 whereas the average episode length for the per-decision

method is 18.20, indicating a significant decrease in total length meaning higher
sample efficiency.

3 Part 2: Alternative Maze Environment

To explore the benefits of the per-decision update method over the standard
method more, I devised a different maze environment, in which the number of
steps between the starting and end states would be higher. This would benefit
more from a higher n in n-step Sarsa, and a higher n would negatively affect the
standard method more (as the likelihood of zero-ed out TD updates increases
exponentially with n) compared to the per-decision method.

Learned Q-values after 5000 episodes Greedy Episode Trajectory in Maze

(a) Learned @Q-values after 5000 episodes (b) Greedy path using previously learned
on magze environment. Q-values.

Figure 4: Results of standard off-policy n-step Sarsa on the maze environment.

Then, I performed a hyperparameter search over n, with n ranging from 1
to 20 on a roughly logarithmic interval. I averaged the average episode length
over 10 runs and plotted that against n for both the standard and per-decision
methods. For low n values (n < 5), the performance of the two methods is about
the same, but for higher n values, the per-decision method remains stable while
the standard method performance decreases due to zero-ed out TD updates.

Comparison of Mean Episode Lengths for Different n

—&— Standard Off-Policy n-step SARSA

110 —&— Per-Decision Off-Policy n-step SARSA

100 4

90 4

80

70 -

Mean Episode Length over 5000 episodes (10 runs)

60

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
n (number of steps)

Figure 5: Average episode length over 10 runs vs. value of n for standard off-
policy n-step Sarsa and per-decision off-policy n-step Sarsa.

4 Summary and Conclusion

I implemented importance-sampling-based off-policy Sarsa and showed the im-
plementation is correct on the cliff-walking environment. Then, I implemented
the per-decision method where unlikely target policy actions are bootstrapped
on each step of the TD-update trajectory with the existing value function. The
average episode length using the new method is significantly lower than the
standard method. Next, I created a maze environment with higher step count
and compared the performance of both methods versus n. As expected, for low
n both methods are similar, but as n increases, the performance of the standard
method rapidly decreases while it remains stable for the per-decision method.

