
CS 138: Homework 2

Lawrence Qiu

October 12, 2025

1 Introduction

Exercise 5.12 of Sutton and Barto asks us to apply a Monte Carlo control
method towards a racetrack-like reinforcement learning environment. Monte
Carlo methods utilize trajectories and rewards generated from interactions with
the environment to inform q or value functions, rather than directly accessing
the state transition function like in dynamic programming methods. Specifically,
on the completion of the episode, the discounted cumulative reward is calculated
for each state or state-action pair and the value or q function is updated. This
is in contrast to temporal difference methods in which the previous step’s value
or q function is updated relative to the next.

In the racetrack environment, the agent controls a vehicle attempting to
navigate a right turn. On each time step, the agent can increase or decrease the x
and y velocity of the vehicle, limited to positive values less than 5. Additionally,
the vehicle cannot be stationary. The map is a tile grid, with a horizontal line
denoting the starting tiles and a vertical line denoting finish tiles. The vehicle
starts at a random start tiles and must reach the finish tiles without hitting any
boundary tiles. If it does, the agent restarts at a starting tile and the velocity
is reset. To motivate the agent to reach the end as fast as possible, the agent
is given −1 reward until reaching the end. There is a 10% chance on each time
step that the acceleration requested by the agent is zeroed out.

2 Part 1: Implementing the exercise

For the Monte Carlo method, I implemented an on-policy every-visit incremental
MC algorithm. TheQ function and a count C function are represented as arrays,
both initialized to zero. Then, after each episode, the cumulative reward G is
set to zero and each step is visited backwards. G is then updated with the
discounted reward

G ← γG+R

and Q and C are updated incrementally

C ← C + 1, Q ← Q+
1

C

󰀃
G−Q

󰀄
.

1



For control, I simply used 󰂃-greedy where there is an 󰂃 probability of picking
a random action and a 1 − 󰂃 probability of picking the maximum value action
with ties broken randomly.

To implement the environment, I first created a way of representing the map
as a file. I decided to use an image so that it can be edited using conventional
image editors. I also decided to represent the start and end lines as tiles so that
they can all be incorporated into a single file. The following images represent the
easy and hard map. To calculate the next position, I decided to just increment
the position by velocity. This means it is necessary to extend the end tiles so
that the vehicle cannot jump past the finish line. The rest of the implementation
was straightforward based on the problem description.

(a) Easy map. Red tiles represent start-
ing points and green tiles represent finish
points. The path is wide and short.

(b) Hard map. Red tiles represent start-
ing points and green tiles represent finish
points. The path is longer with a thinned
bottleneck in the middle.

Figure 1: Maps used in the racetrack environment.

For the following tests, I used the following parameters: # episodes = 5000,
󰂃 = 0.1, γ = 0.9. The following figures illustrate how the agent converged for
both.

2



(a) Episode length by episode (easy map).
The agent converges quickly, averaging to
8 steps per episode by the end of training.

(b) Sample trajectory (easy map). Blue
lines denote existing velocity while red
lines denote acceleration.

Figure 2: Training results on the easy map.

(a) Episode length by episode (hard
map). The agent converges slightly
slower but still quickly with average of 50
steps per episode at end of training. Sev-
eral resets likely occur due to zeroed out
acceleration.

(b) Sample trajectory (hard map).

Figure 3: Training results on the hard map.

To see the effects of the hyperparameters 󰂃 and γ, I performed a grid search
with 10−5 < 󰂃 < 100 and 10−10 < γ < 100. The results are shown in Figure 4.
The plot shows the total number of steps over 5000 episodes—this value reflects
both the converged path as well as the speed of convergence. Each set is averaged
over 10 runs.

3



Figure 4: Total number of steps vs. 󰂃 and γ. 󰂃 does not seem to have a significant
effect under 10−2, indicating that exploratory steps are mostly harmful. This
is likely because explicit exploration is not necessary as the initialization of q
to 0 would be considered optimistic as rewards are negative so exploration is
already driven. Interestingly, γ does have an effect with an optimal value of
around 10−3. The minimal total number of steps is 34686.

Due to the significance of the initial value of q, I also performed a hyper-
parameter search over −20 < q < 0 and 10−5 < 󰂃 < 100. This was done with
γ = 0.95 so the minimal possible discounted cumulative reward is −20.

Figure 5: Total number of steps vs. 󰂃 and initial q value. For high 󰂃 values
(󰂃 > 10−2), the initial q value doesn’t matter as much as 󰂃 guides exploration.
For lower 󰂃 values, initial q value does matter, with optimal value around −4 and
performance decaying below this. This is because with low 󰂃 and q exploration
is inhibited. The minimal total number of steps is 37830.

4



3 Part 2: Comparison with Upper-Confidence-
Bound selection

An alternative to 󰂃-greedy exploration is upper confidence bound exploration.
In UCB, the highest-value action is always selected, but the q value is offset with
an uncertainty / exploration term. This term depends on both the number of
times the state/action pair has been explored before as well as the current total
number of steps, as to increase the total number of exploration steps as time
passes. Specifically, the value of each action is calculated as follow:

At = argmax
a

󰁫
Qt(a) + c ·

󰁴
ln t

Nt(a)

󰁬
.

The coefficient c denotes how much weight the exploration term has. I performed
the same experiment on the easy map with c = 0.1. Figure 6 shows the number
of steps per episode over time and a sample trajectory.

(a) Episode length by episode (UCB on
easy map). The policy quickly converges
to about 8 steps per episode, similarly to
󰂃-greedy. The variance is lower likely be-
cause UCB is not stochastic (besides tie
breaking).

(b) Sample trajectory (UCB on easy
map), similar to those under 󰂃-greedy.

Figure 6: UCB on the easy map: learning curve and sample trajectory.

I performed a hyperparameter search with 10−5 < c < 101 and 10−10 < γ <
100. The results are shown in Figure 7.

5



Figure 7: Total number of steps vs. c and γ. High c values (> 100) result in
poor performance due to excess exploration. Below that the plot is very similar
to the results for 󰂃-greedy with optimal γ value of 10−3. The minimal total step
count is 33901.

4 Summary and Conclusion

I implemented a Monte Carlo control algorithm and applied it to the racecar
environment. I tested two exploration methods: 󰂃-greedy and upper confidence
bound. For both methods, low exploration rates performed best. This was
likely because explicit exploration was not necessary because the initial q values
are optimistic: q values can only be negative as rewards are negative so when
they are initialized to zero, the exploration algorithm is incentivized to pick less
explored options.

6


