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1 Introduction

Chapter 2 of the textbook introduces the multi-armed bandit problem, in which
an agent is tasked with maximizing the reward over a certain number of steps by
choosing one of several possible actions. Each action has an intrinsic value ¢, (a)
which is sampled from a normal distribution at the beginning of the experiment.
On each step, the agent’s reward is sampled from a normal distribution centered
at the intrinsic value of the action chosen by the agent. It is necessary therefore
for the agent to explore by picking each action to estimate the intrinsic value of
it, before exploiting by picking the highest value one.

One strategy to implement the multi-armed bandit is the e-greedy strategy,
in which on each step the agent has an € probability of picking a random ac-
tion and a 1 — € probability of choosing the maximum valued one based on its
estimates. There are multiple ways to calculate this estimate. One method
is to calculate the mean of past rewards from that action, which has a simple
incremental implementation:

Qn+1 = Qn + %(Rn - Qn)a

where @, is the value estimate at the nth sample of the action. Another method
is to calculate the exponential moving average (EMA) of the action rewards,
favoring recent samples over older ones. This has the simple incremental imple-
mentation:

Qn+1 = Qn + a(Rn - Qn)

2 Part 1: Implementing the Exercise

Exercise 2.5 of the textbook asks us to implement the multi-armed bandit prob-
lem for a nonstationary version of the multi-armed bandit problem, in which
the rewards change over time. Specifically, instead of initializing intrinsic values
gx(a) ~ N(0,1) at the beginning, the values are initialized to zero and vary on
each time step according to a normal distribution:

gx(a) + qi(a) + Aq, Aq~ N(0,0.01).



I first implemented the basic stationary version of the problem in Python.
For the following experiments, I used # arms = 10, # steps = 10,000, and #
experiments = 2000. The original ¢, (a) values are sampled from A(0,1) and
the value estimates are calculated using the mean. Figure 1 shows the results
of the simulation, which matches the results shown in the textbook.
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Figure 1: Mean reward and % optimal action vs. step of the reimplementation
of the stationary multi-armed bandit problem. e values of 0, 0.1, and 0.01 are
shown, with 0.1 performing the best, 0.01 lagging behind, and 0 performing the
worst, ranging from final mean reward of 1.4 to 1.0. Additionally, the optimal
policy is plotted for comparison. These results match the textbook.

Next, I implemented the nonstationary version of the problem, in which
g+ (a) values are initialized to 0 and sampled from A(0,0.01). Here, € is fixed to
0.1 and both the mean value estimation strategy and the EMA value estimation
with a values of 0.03, 0.1, and 0.3 are tested.
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Figure 2: Mean reward and % optimal action vs. step for nonstationary multi-
armed bandit problem. EMA value estimation with « = 0.1 performs the best,
with o = 0.03 and o = 0.3 lagging behind. Mean value estimation performs the
worst, with % optimal action asymptotically limited at 40%.



Figure 2 shows a comparison of these strategies. All of the EMA value
estimation methods outperform the mean value estimation method, which is
expected as the mean method gives equal weights to all past samples, whereas
only recent samples are likely to be relevant as the action values drift. The
asymptotic % optimal action performance indicates that the method is unable
to adapt to changing optimal actions.

The best EMA strategy is a = 0.1, with both o = 0.3 and a = 0.03
performing worse. This is expected—too high « leads to too few value esti-
mates and high variance whereas too low a puts too much weight on old sam-
ples. I performed a full grid hyperparameter search for 1072 < o < 10° and
10~% < € < 10°, which is shown in Figure 3.
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Figure 3: Final mean reward over ¢ and «. Good performance occurs over
multiple magnitudes of both hyperparameters, indicating that the strategy is
robust. The highest reward occurs at « = 0.11 and € = 0.034, with mean reward
of 0.92 compared to the optimal policy value of 1.02.

3 Part 2: Comparison with Upper-Confidence-
Bound Selection

Another action selection strategy is upper-confidence-bound (UCB) selection.
In this method, the action with the highest value is always selected, but this
value is biased with an uncertainty factor based on both the current time and
the number of samples for the particular action:

A, = arg mgX[Qt(a) +e/wl-

The coefficient ¢ dictates the weight of the factor—high ¢ promotes more
exploration whereas low ¢ reduces to the greedy strategy. Figure 4 shows the
performance of this strategy with different values of ¢, using the mean action
value estimation.
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Figure 4: Mean reward and % optimal action vs. step for UCB selection in the
nonstationary multi-armed bandit problem. From best to worst: ¢ = 3, ¢ = 10,
c =1, ¢c=0.3. The ¢ = 10 case is an outlier as it underperforms early but
catches up later.

Interestingly, all but the ¢ = 10 run show % optimal action peaking early
in the run and then decreasing. This is likely because, unlike in the e-greedy
strategy, exploration steps are not evenly spaced throughout the run, but rather
concentrated in the beginning (since the numerator of the exploration term
scales with In¢ rather than linearly with t). As the optimal action drifts later,
the agent is unable to adapt, so the % optimal action drops.

These tests were done with a mean action value estimation strategy. I also
performed the experiment with ¢ fixed to 3 and varying «. Figure 5 shows that
EMA value estimation is able to partially compensate for the uneven explo-
ration, with higher a reducing the dip in action accuracy.
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Figure 5: Mean reward and % optimal action vs. step for UCB selection in
nonstationary bandit problem. « values of 0.003, 0.01, 0.03, and 0.1 are shown.
a = 0.01 performs the best and 0.1 the worst, though final mean rewards are
all =~ 0.8. Larger a reduces the dip in % optimal action.



Lastly, I also performed a full grid hyperparameter search for 10~% < o < 10°
and 1073 < ¢ < 10, shown in Figure 6.
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Figure 6: Final mean reward over a and ¢. Good performance occurs over
multiple magnitudes of both hyperparameters. The highest reward occurs at
a = 0.013 and ¢ = 0.23, with mean reward of 0.91 compared to the optimal
policy value of 1.02.

4 Summary and Conclusion

I performed several simulations of the nonstationary multi-armed bandit prob-
lem, in which the action values vary throughout the experiment. Several strate-
gies were tested, including e-greedy with mean value estimation, e-greedy with
EMA value estimation, UCB selection with mean value estimation, and UCB
selection with EMA value estimation. In general, EMA value estimation out-
performs mean value estimation as it weighs recent observations over past ones
that may be out of date. The optimal hyperparameters for both e-greedy and
UCB were found, and both perform close to the maximum, although e-greedy
was slightly closer. This is likely because e-greedy distributes exploration steps
uniformly throughout the experiment while UCB concentrates them toward the
beginning.



